Numerical Analysis of Hydrodynamics for Bionic Oscillating Hydrofoil Based on Panel Method

نویسندگان

  • Gang Xue
  • Yanjun Liu
  • Muqun Zhang
  • Hongpeng Ding
چکیده

The kinematics model based on the Slender-Body theory is proposed from the bionic movement of real fish. The Panel method is applied to the hydrodynamic performance analysis innovatively, with the Gauss-Seidel method to solve the Navier-Stokes equations additionally, to evaluate the flexible deformation of fish in swimming accurately when satisfying the boundary conditions. A physical prototype to mimic the shape of tuna is developed with the revolutionized technology of rapid prototyping manufacturing. The hydrodynamic performance for rigid oscillating hydrofoil is analyzed with the proposed method, and it shows good coherence with the cases analyzed by the commercial software Fluent and the experimental data from robofish. Furthermore, the hydrodynamic performance of coupled hydrofoil, which consisted of flexible fish body and rigid caudal fin, is analyzed with the proposed method. It shows that the caudal fin has great influence on trailing vortex shedding and the phase angle is the key factor on hydrodynamic performance. It is verified that the shape of trailing vortex is similar to the image of the motion curve at the trailing edge as the assumption of linear vortex plane under the condition of small downwash velocity. The numerical analysis of hydrodynamics for bionic movement based on the Panel method has certain value to reveal the fish swimming mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigations of Fluid Structure Coupling: Oscillating Hydrofoil

This paper presents an investigation of the hydro elastic behavior of vibrating blades in hydraulic machines, which is of strong interest for turbo machinery applications. As a representative case study for vibrating blade in hydraulic machines, a NACA 0009 oscillating hydrofoil is considered. The aim is to model the hydrodynamic moment acting on the oscillating hydrofoil. Two types of oscillat...

متن کامل

Numerical optimization of hydrofoil geometry for a Darrieus hydraulic turbine using dynamic mesh and central composite design

In this study, a Darrieus hydraulic turbine for power generation applications is chosen and the response surface methodology (RSM) based on central composite design (CCD) is applied to obtain the optimized design for its hydrofoil geometry to increase the torque coefficient. For this aim, all turbine performance factors, except hydrofoil geometry, were considered to be constant and the turbine ...

متن کامل

Calculation of Three-dimensional Unsteady Sheet Cavitation by a Simple Suraface Panel Method “sqcm”

This paper presents a calculation method for the 3-D unsteady cavitating hydrofoil problem. The method is based on a simple surface panel method “SQCM” which satisfies easily the Kutta condition even in the unsteady problem. This method is applied to the Wagner problem, heaving hydrofoil and the hydrofoil in sinusoidal gust. We show some calculated results for partially cavitating and supercavi...

متن کامل

The usability of the Selig S1223 profile airfoil as a high lift hydrofoil for hydrokinetic application

This work presents a numerical analysis of the ability of the high lift airfoil profile Selig S1223 for working as hydrofoil under water conditions. The geometry of the hydrofoil blade is designed through a suitable airfoil profile and then studied carefully by means of Computational Fluid Dynamics (CFD) in order to check its hydrodynamic behavior, i.e., including lift and drag analysis, and de...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016